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We study current-induced vibrational cooling, heating, and instability in a donor–acceptor

rectifying molecular junction using a full counting statistics approach. In our model, electron–hole

pair excitations are coupled to a given molecular vibrational mode which is either harmonic or

highly anharmonic. This mode may be further coupled to a dissipative thermal environment.

Adopting a master equation approach, we confirm the charge and heat exchange fluctuation

theorem in the steady-state limit, for both harmonic and anharmonic models. Using simple

analytical expressions, we calculate the charge current and several measures for the mode effective

temperature. At low bias, we observe the effect of bias-induced cooling of the vibrational mode.

At higher bias, the mode effective temperature is higher than the environmental temperature, yet

the junction is stable. Beyond that, once the vibrational mode (bias-induced) excitation rate

overcomes its relaxation rate, instability occurs. We identify regimes of instability as a function

of voltage bias and coupling to an additional phononic thermal bath. Interestingly, we observe

a reentrant behavior where an unstable junction can properly behave at a high enough bias.

The mechanism for this behavior is discussed.

I. Introduction

Can molecules serve as reliable components in electronic circuits?

A major obstacle in realizing molecular-based electronic devices

is junction heating and breakdown, the result of vibrational

excitation by the electron current.1–12 This situation generally

occurs once the bias voltage exceeds typical molecular vibrational

frequencies and the electronic levels are situated within the bias

window. If energy dissipation from the conducting object to its

environment (metals, solvent) is not efficient, the molecular

conductor experiences significant heating, ultimately leading to

junction breakdown. A related question, the possibility for a

nonequilibrium induced cooling of the junction, has been the

topic of recent experimental and theoretical studies.5,13–16

In this paper, we study the problem of bias-induced molecular

cooling, heating, and (potential) junction breakdown due to

vibrational instabilities, using the Donor (D)–Acceptor (A)

Aviram–Ratner electronic rectifier setup,17 see Fig. 1. By

coupling electronic transitions within the junction to a parti-

cular internal molecular vibrational mode, significant molecular

heating can take place once the donor level is lifted above the

acceptor level, as the excess electronic energy is used to excite

the vibrational mode. This process may ultimately lead to

junction instabilities and breakdown.18 The model can also
demonstrate current-induced cooling at low bias, when tuning

the junction’s parameters.

Within this simple system, several issues are of fundamental

and practical interest. First, one would like to understand

the role of mode anharmonicity in the transport process and

in the heating or cooling behavior. Second, the molecular

Fig. 1 Schemes of the two models considered in this work. A biased

donor–acceptor electronic junction is coupled to either (i) a harmonic

molecular mode, or (ii) an anharmonic mode, represented by a two-

state system. In both cases the molecular mode may further relax its

energy to a phononic thermal reservoir, maintained at the temperature

Tph. This coupling is represented by a dashed arrow.
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vibration under investigation, the one controlling junction

stability, can be assumed to be well isolated from other modes.

Alternatively, this mode may be coupled to other phonons,

allowing for energy damping to a larger environment. These

two situations should result in distinctive cooling or heating

behaviors. These issues will be explored here. Other relevant

challenges which are not considered here are the possibility to

selectively excite vibrational modes in the molecule, using

voltage bias,19 or more generally, to drive molecular motion

or trigger chemical dynamics.20

Using a full counting statistics (FCS) approach, our analysis

further contributes to the institution of fluctuation relations in

open many-body quantum systems. Fluctuation theorems (FT)

for entropy production quantify the probability of negative

entropy generation, measuring ‘‘second law violation’’.21,22

Such ‘‘anomalous’’ processes are relevant at the nanoscale.

While originally demonstrated in classical systems,23 recent

experimental efforts are dedicated to explore their validity

within quantum systems.24 From the theoretical side, the

extension of the work and heat FT to the quantum domain

has recently attracted significant attention.25–28 Specifically, a

quantum exchange FT, for the transfer of charge and energy

between two reservoirs maintained at different chemical poten-

tials and temperatures, has been derived in ref. 29 using

projective measurements, and in ref. 27 based on the unraveling

of the quantum master equation. It is of interest to test these

relations in particular cases, e.g., for systems strongly coupled

to multiple reservoirs, when the reservoirs cooperatively affect

the subsystem,30 including nonmarkovian reservoirs,31–33 and in

models showing coupled charge and energy transfer processes,

yet the respective fluxes are not tightly coupled. The system

investigated here corresponds to the latter case.

Different flavors of the phonon-assisted-tunneling model have

been analyzed in the literature.11 Among the various techniques

adopted we list solution of the dynamics as a scattering problem,34

extension of the basic nonequilibrium Green’s function formalism

to include molecular vibrations,35 or the use of master equation

approaches.36 In this paper, we exploit the latter method, and

present a full-counting statistics of the system, allowing for the

exploration of charge current, energy current and noise processes

at the same footing. Further, we analytically obtain the cumulant

generating function (CGF) of the model, allowing for the verifica-

tion of the steady-state charge–energy fluctuation theorem in this

many-body quantum system.

The objectives of this work are therefore twofold: (i) to

analyze a simple model that can elucidate cooling, heating and

instability mechanisms in molecular rectifiers, specifically, to

understand the roles of mode anharmonicity and additional

damping routes, and (ii) to establish the steady-state entropy

production fluctuation theorem within a nonequilibrium

quantum model, transferring charge and energy between the

reservoirs in a cooperative manner. Recent studies have

analyzed the effect of electron–vibration interaction on the

full counting statistics (FCS) within different approaches.32,37–40

Complementing these efforts, our treatment offers an analytic

structure for the CGF, allowing for a clear inspection of the

microscopic processes involved.

The plan of the paper is as follows. In Section II we

introduce the D–A molecular rectifier and its two flavors,

either including a harmonic or an anharmonic internal vibra-

tion. In Section III the anharmonic model is analyzed within a

FCS approach, demonstrating cooling, heating and instability

dynamics at different parameter regions. The case with an

additional phonon bath is considered in Appendix A. Section

IV explores the harmonic mode model. Section V concludes.

II. Model

Our model includes a biased molecular electronic junction and

a selected internal vibrational mode which is coupled to an

electronic transition in the junction. This mode possibly inter-

acts with other (reservoir) phonons, an extension presented in

Appendix A. For a schematic representation, see Fig. 1. Generally,

this model allows one to investigate the exchange of electronic

energy with molecular (vibrational) heating. The model has been

utilized in ref. 41 for studying the thermoelectric and thermal

transport of electrons in molecular junctions with electron–

phonon interactions within the linear response regime. The

total Hamiltonian is given by the following terms,

H = HM + HL + HR + Hc + Hvib + HI. (1)

The first term, HM, stands for the molecular electronic part

including two electronic states

HM ¼ edc
y
dcd þ eacyaca: ð2Þ

Here, c
y
d=aðcd=aÞ is a fermionic creation (annihilation) operator

of an electron on the donor or acceptor sites, of energies ed,a.
The second and third terms in eqn (1) describe the two metals,

Hn, n = L, R, each including a collection of noninteracting

electrons

HL ¼
X
l2L

elc
y
l cl; HR ¼

X
r2R

ercyrcr: ð3Þ

The hybridization of the donor state to the left (L) bath, and

similarly, the coupling of the acceptor site to the right (R)

metal, are incorporated into Hc,

Hc ¼
X
l

vlðcyl cd þ c
y
dclÞ þ

X
r

vrðcyrca þ cyacrÞ: ð4Þ

The Hamiltonian further includes an internal molecular vibra-

tional mode of frequency o0. The mode displacement from

equilibrium is coupled to an electron hopping in the system with

an energy cost k, resulting in heating and/or cooling effects,

Hvib ¼ o0b
y
0b0;

HI ¼ k½cydca þ cyacd�ðb
y
0 þ b0Þ:

ð5Þ

Here, b
y
0ðb0Þ represents a bosonic creation (annihilation) operator.

Note that in our construction, the donor and acceptor sites are

coupled to each other only through the interaction with the

vibrational mode. This model thus does not allow for coherent

electron tunneling between the two metals, as only inelastic

processes, through the excitation or relaxation of the vibrational

mode, are allowed. A direct tunneling term has been included in

other related studies, see e.g. ref. 11, 12, 14 and 15.We could argue

in favor of our simple model from several directions. First, in the

present study we are predominantly interested in the vibrational

mode population. Thus, electrons that are coherently transferred
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through the junction are irrelevant in that respect: including

direct tunneling processes would definitely affect the magnitude of

the electron current in the system, however, the effect of the

vibrational instability discussed below should occur regardless.

One could also slightly modify our model, and take the two

molecular states D and A to represent molecular orbitals, HOMO

and LUMO, further coupling each to both leads. Again, for

calculating vibrational level population one needs to only consider

the contribution to the current due to vibrationally assisted

electrons. This situation is similar to that considered in ref. 42,

where current-induced-light-emission in molecular junctions has

been calculated. Indeed, our formalism could equally describe

such processes, see also our concluding remarks. Another reason

for selecting this model was practical: it is a significant challenge

to derive fluctuation relations for a model allowing for both

coherent and incoherent electron transmission effects, thus

relaying on some approximations is unavoidable.30,31,43 In

particular, Maier et al.,40 looked at the charge transfer statistics

of a model that in principle could allow for both effects.

However, by making the strong electron–phonon coupling

approximation, the authors have practically forced every single

electron tunneling event to fully excite or de-excite the local

phonon. This situation is similar to that considered in our model.

We now diagonalize the electronic part of the Hamiltonian,

Hel = HM + HL + HR + Hc, to obtain, separately, the exact

eigenstates for the L-half and R-half of Hel,

Hel ¼
X
l

ela
y
l al þ

X
r

erayrar: ð6Þ

Assuming that the reservoirs are dense, their new operators are

assigned energies same as those before diagonalization. The

donor and acceptor (new) energies are assumed to be placed

within the band of continuous states, excluding the existence

of bound states. The old operators are related to the exact

eigenstates by44

cd ¼
X
l

llal; cl ¼
X
l0

Zl;l0al0

ca ¼
X
r

lrar; cr ¼
X
r0

Zr;r0ar0 ;
ð7Þ

where the coefficients, e.g., for the L set, are given by

ll ¼
vl

el � ed �
P

l0
v2
l0

el�el0 þid

Zl;l0 ¼ dl;l0 �
nlll0

el � el0 þ id
:

ð8Þ

Similar expressions hold for the R set. It is easy to derive the

following relation,

X
l0

v2
l0

el � el0 þ id
¼ PP

X
l0

v2
l0

el � el0
� iGLðelÞ=2; ð9Þ

with the hybridization strength GL(e) = 2p
P

ln2l d(e � el). The
expectation values of the exact eigenstates are

hayl al0 i ¼ dl;l0 fLðelÞ; hayrar0 i ¼ dr;r0 fRðerÞ; ð10Þ

where fL(e) = [exp(bL(e � mL)) + 1]�1 denotes the Fermi

distribution function. An analogous expression holds for fR(e).

The reservoirs temperatures are denoted by 1/bn; the chemical

potentials are mn. With the new operators, the Hamiltonian (1)

can be rewritten as

HH ¼
X
l

ela
y
l al þ

X
r

erayrar þ o0b
y
0b0

þ k
X
l;r

½l�l lra
y
l ar þ l�rlla

y
ral�ðb

y
0 þ b0Þ:

ð11Þ

In this form, the model generally describes the process of an

electron–hole pair excitation by a molecular vibration. We denote

it byHH, to highlight the vibrational mode harmonicity. A simple

version of the model is reached by replacing the harmonic mode

by a two-state system (spin), using the Pauli matrices,

HA ¼
X
l

ela
y
l al þ

X
r

erayrar þ
o0

2
sz

þ k
X
l;r

½l�l lra
y
l ar þ l�rlla

y
ral�sx:

ð12Þ

The truncated harmonic spectrum imitates an anharmonic

mode, as only several (two in the present extreme case) states

are bounded within the anharmonic potential.45 We denote

this Hamiltonian by HA, to indicate on the anharmonicity of

the molecular mode. The dynamics of this model should

coincide with the behavior dictated byHH, at low temperatures.

Charge and energy transfer dynamics in these models can be

followed by studying electronic properties.39,40,46 In contrast, here

we explore the junction response to an applied voltage bias by

studying the vibrational mode excitation and relaxation dynamics.

The analysis of the two-state model, eqn (12), therefore turns out

to be simpler than the case when the vibrational mode has an

infinite spectrum. In what follows, we derive in details the CGF for

the anharmonic-mode case. Appendix A generalizes this calcula-

tion to include an additional dissipative thermal bath. We then

extend these results and discuss the model conveyed by eqn (11).

III. Anharmonic-mode rectifier

A. Impurity dynamics

We explore the dynamics of an anharmonic mode, referred to

as an ‘‘impurity’’, or a two-state-system (TLS), within an

electronic rectifier, assuming a weak donor–acceptor – mode

interaction. We rewrite eqn (12) as

HA ¼
o0

2
sz þ sxFe þ

X
l

ela
y
l al þ

X
r

erayrar; ð13Þ

by defining the electron–hole pair generation operator as

Fe ¼ k
X
l;r

ðl�l lra
y
l ar þ l�rlla

y
ralÞ: ð14Þ

The Hamiltonian (13) can be transformed into the spin-fermion

model47,48 of zero energy spacing, using the unitary transformation

UwszU = sx, UwsxU = sz, (15)

with U ¼ 1ffiffi
2
p ðsx þ szÞ. The transformed Hamiltonian H̃A =

UwHAU is given by

~HA ¼
o0

2
sx þ szFe þ

X
l

ela
y
l al þ

X
r

erayrar: ð16Þ
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In this form, the TLS dynamics can be simulated exactly using

an influence-functional path integral approach.49

Back to (13), we denote the TLS ground state and excited

state by |0i and |1i, with energies 0 and o0, respectively. We

express the Pauli operators by these states, sz = |1ih1| � |0i h0|,
sx = |1ih0| + |0ih1|. Next, using the quantum Liouville

equation, we obtain kinetic-rate equations for the states

population pn (n = 0, 1).45,50 This standard derivation, valid

for the harmonic-mode model as well, involves a second order

perturbation theory treatment with respect to k, the mode–

molecule coupling parameter, followed by a Markov approxi-

mation. The resulting equation for the reduce density matrix

rS takes the simple form (�h � 1)

_rS ¼ �i½VðtÞ; rSð0Þ�

�
Z 1
0

dtTrBf½VðtÞ; ½VðtÞ; rSðtÞrLrR��g ð17Þ

Here, V= sxFe represents the (mode–molecule) coupling term

in eqn (13). The operators are written in the interaction

representation, O(t) = ei(HA�V)tOe�i(HA�V)t and we trace over

the electronic degrees of freedom. The reservoirs n= L, R are

maintained in a grand canonical state as rn= e�bn(Hn�mnNn)/Zn;

Zn is the partition function of the n bath. Identifying the

diagonal matrix elements as population, pn = [rS]n,n, we

obtain in the TLS case the kinetic equation

:
p1 = � ke1-0p1 + ke0-1p0, p1 + p0 = 1. (18)

It should be noted that for the specific model Hamiltonian

(13), one obtains time-convolutionless rate equations where

the off-diagonal elements of the reduced density matrix are

decoupled from the population dynamics beyond second-order

perturbation theory in the system-bath coupling parameter,

assuming a factorized (system-bath) initial condition.51,52 In

other words, the secular approximation is not invoked in the

TLS case.53 However, we do need to use it once considering

the harmonic mode model, eqn (59). Within second-order

coupling scheme, the excitation (ke0-1) and relaxation (ke1-0)

rate constants are given by Fourier transforms of bath correla-

tion functions

ke1!0 ¼
Z 1
�1

eio0thFeðtÞFeð0Þidt

ke0!1 ¼
Z 1
�1

e�io0thFeðtÞFeð0Þidt;
ð19Þ

enclosing electron–hole pair excitation processes,

hFeðtÞFeð0Þi ¼ k2TrLTrR
X
l;l0

X
r;r0

rLrR

8<
:

� ½l�l lra
y
l ðtÞarðtÞ þ l�rlla

y
rðtÞalðtÞ�

�½l�l0lr0a
y
l0
ð0Þar0 ð0Þ þ l�r0ll0a

y
r0 ð0Þal0 ð0Þ�

9=
;:
ð20Þ

The operators are given in the interaction representation, e.g.,

a
y
l ðtÞ ¼ eiHLta

y
l e
�iHLt. As we separately trace over the L and

R-baths’ degrees of freedom, it can be shown that the rate

constants can be decomposed into two contributions,

ke1-0 = kL-R
1-0 + kR-L

1-0 ; ke0-1 = kL-R
0-1 + kR-L

0-1 ,

(21)

satisfying

kL!R
1!0 ¼ 2pk2

X
l;r

jllj2jlrj2fLðelÞð1� fRðerÞÞdðo0 þ el � erÞ

kL!R
0!1 ¼ 2pk2

X
l;r

jllj2jlrj2fLðelÞð1� fRðerÞÞdð�o0 þ el � erÞ:

ð22Þ

Similar relations hold for the right-to-left going excita-

tions. The energy in the Fermi function fn(e) is measured

with respect to the (equilibrium) Fermi energy, placed at

(mL + mR), and we assume that the bias is applied symme-

trically, mL = �mR. The four rate constants describe distinct

electron–hole excitation processes, depicted in Fig. 2. At

forward bias, if we set the effective density of states

(DOS) of the L bath to lie higher in energy that the DOS

of the right bath, we immediately note that the rate

kL-R
0-1 should dominate over kL-R

1-0 , potentially leading to

‘‘population inversion’’ of the vibrational mode. Utilizing

electronic reservoirs with energy dependent DOS is thus the

basic ingredient of the instability formation here, as we show

below. For convenience, we define the spectral density for the

n bath as

JnðeÞ ¼ 2pk
X
j2n
jlj j2dðej � eÞ: ð23Þ

Explicitly, using eqn (8), we find that this function has a

Lorentzian lineshape, and that it is centered around either

the D or A level,

JLðeÞ ¼ k
GLðeÞ

ðe� edÞ2 þ GLðeÞ2=4

JRðeÞ ¼ k
GRðeÞ

ðe� eaÞ2 þ GRðeÞ2=4
:

ð24Þ

Fig. 2 Scheme of the vibrational mode excitation and relaxation

processes. A full circle represents an electron transferred; a hollow

circle depicts the hole that has been left behind.
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Using the spectral density function, we express the terms in

eqn (22) as integrals

kL!R
1!0 ¼

1

2p

Z 1
�1

fLðeÞ½1� fRðeþ o0Þ�JLðeÞJRðeþ o0Þde

kR!L
1!0 ¼

1

2p

Z 1
�1

fRðeÞ½1� fLðeþ o0Þ�JRðeÞJLðo0 þ eÞde

kL!R
0!1 ¼

1

2p

Z 1
�1

fLðeÞ½1� fRðe� o0Þ�JLðeÞJRðe� o0Þde

kR!L
0!1 ¼

1

2p

Z 1
�1

fRðeÞ½1� fLðe� o0Þ�JRðeÞJLðe� o0Þde:

ð25Þ

The following relations hold (bL = bR and Dm � mL � mR),

kR!L
1!0

kL!R
0!1

¼ e�bDmebo0 ;
kL!R
1!0

kR!L
0!1

¼ ebDmebo0 : ð26Þ

In equilibrium, detailed balance is therefore maintained.

Eqn (18) and the rates (22) generalize ref. 54. There, the

damping of adsorbate vibration has been studied, while

assuming energy independent density of states. In our nota-

tion, this corresponds to the case of flat spectral density

functions. As we comment in the summary section, the fact

that the functions Jn(e) do depend on energy is essential for the

generation of vibrational instability. The dynamics conveyed

by eqn (18)–(25) is non-separable in terms of the two metals, in

contrast to simple linear interaction cases.45 In other words,

the reservoirs cooperatively excite or damp energy from the

impurity, thus their action is non-additive.

It should be noted that while we assume a weak interaction

limit, between electron–hole pair generation and the vibra-

tional mode, our scheme does not enforce weak metal–

molecule coupling; this part is exactly diagonalized to yield

the reservoirs spectral function, peaked at about the D or

A levels. If one were to force weak metal–molecule interaction,

the spectral functions (24) would reduce to delta functions,

JL(e) = 2pkd(e � ed) and JR(e) = 2pkd(e � ea), and the

resulting rates would be evaluated at the donor and acceptor

levels, e.g., kL-R
1-0 = 2pk2fL(ed)[1 � fR(ea)]d(ed� ea + o0). This

also implies that charge and energy currents are not ‘‘tightly

coupled’’ here, such that for each transferred electron not

necessarily precisely one quanta of energy should be gained or

drained at either contact. In this aspect, our study comple-

ments the work reported in ref. 12. There, using the small

polaron transformation, the coupling of the molecular bridge

to the leads is assumed to be weak, while its coupling to the

harmonic vibrational mode can be made large. This study has

further allowed for multiple molecular electronic states on the

bridge with electron–phonon coupling on each site, a situation

more complex than the one considered here.

B. Resolved charge and energy equations

We write here a closed expression for the cumulant generating

function, following the approach developed in ref. 30 and 31.

It will allow us to obtain the current, its noise power, and to

confirm the FTs in this system. We define Pt(n,N,o) as the

probability that by the time t the impurity (TLS) occupies the

state n, N electrons have been transferred from the L metal to

the R side, and a net energy o has been transferred, L to R.

Resolving eqn (18) to its charge and energy components, we

find that this probability satisfies the following equation of

motion,30,31

_Ptð1;N;oÞ ¼ �Ptð1;N;oÞke1!0

þ
Z 1
�1

Ptð0;N � 1;o� eþ o0ÞfLðeÞ

� ½1� fRðe� o0Þ�JLðeÞJRðe� o0Þde

þ
Z 1
�1

Ptð0;N þ 1;oþ eÞfRðeÞ

� ½1� fLðe� o0Þ�JRðeÞJLðe� o0Þde

_Ptð0;N;oÞ ¼ �Ptð0;N;oÞke0!1

þ
Z 1
�1

Ptð1;N � 1;o� e� o0ÞfLðeÞ

� ½1� fRðeþ o0Þ�JLðeÞJRðeþ o0Þde

þ
Z 1
�1

Ptð1;N þ 1;oþ eÞfRðeÞ

� ½1� fLðeþ o0Þ�JRðeÞJLðeþ o0Þde

ð27Þ

One could reason this rate equation as follows. In the first

equation, the term Pt(1,N,o)ke1-0 stands for the decay rate of

Pt(1,N,o). The second line describes a process whereby the

time t the TLS occupies the ground state, N � 1 excess

electrons have arrived at the R terminus, and an overall of

o � e + o0 energy has been absorbed at the R bath. At the

time t an electron–hole pair excitation generates an electron at

the R bath, leaving a hole at the L metal. This charge transfer

process is accompanied by an electronic energy transmission at

the amount of e � o0: an electron leaving the L bath has a

total energy e, however only e � o0 is gained by the R bath.

The rest, at the amount of o0, is gained by the vibrational

mode. A similar reasoning can explain other terms in eqn (27).

For convenience, the factor (2p)�1 in eqn (25) has been

absorbed into the definition of Jn(o).
We Fourier transform the above system of equations with

respect to both charge and energy, to obtain the characteristic

functionZ(w,Z,t). It depends on the energy counting field Z and
the charge counting field w,

jZðw; Z; tÞi �

P1
N¼�1

eiNw
R1
�1Ptð0;N;oÞeioZdo

P1
N¼�1

eiNw
R1
�1Ptð1;N;oÞeioZdo

0
BB@

1
CCA ð28Þ

It satisfies the differential equation

djZðw; Z; tÞi
dt

¼ �Ŵðw; ZÞjZðw; Z; tÞi; ð29Þ

where the matrix Ŵ contains the following elements

Ŵðw;ZÞ¼ kL!R
0!1 þkR!L

0!1 �eiwF�1 ðZÞ�e�iwFþ2 ðZÞ
�eiwFþ1 ðZÞ� e�iwF�2 ðZÞ kL!R

1!0 þkR!L
1!0

� �
ð30Þ
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Here,

F�1 ðZÞ ¼
Z 1
�1

eieZfLðe� o0Þ½1� fRðeÞ�JLðe� o0ÞJRðeÞde

F�2 ðZÞ ¼
Z 1
�1

e�ieZ½1� fLðe� o0Þ�fRðeÞJLðe� o0ÞJRðeÞde

ð31Þ

The cumulant generating function is formally defined as

Gðw; ZÞ ¼ lim
t!1

1

t
ln
X1

N¼�1
eiNw

Z 1
�1

PtðN;oÞeioZdo; ð32Þ

where we introduced the short notationPt(N,o) =Pt(0,N,o) +
Pt(1,N,o), that is the probability to transfer by the time t,

N electrons and an energy o from left to right, irrespective of

the state of the TLS. The charge and heat currents can be

readily derived, by taking the first derivative of the CGF with

respect to either Z or w,

hIei �
hNit
t
¼ dGðw; ZÞ

dðiwÞ

����
w¼0;Z¼0

hIqi �
hoit
t
¼ dGðw; ZÞ

dðiZÞ

����
w¼0;Z¼0

ð33Þ

The quantity hoit denotes the total energy o transferred from

L to R by the (infinitely long) time t; hNit similarly counts

the particles (electrons) transferred in the same direction, by

that time. The zero frequency noise power can be similarly

obtained,

hSei �
hN2it � hNi

2
t

t
¼ d2Gðw; ZÞ

dðiwÞ2

�����
w¼0;Z¼0

hSqi �
ho2it � hoi

2
t

t
¼ d2Gðw; ZÞ

dðiZÞ2

�����
w¼0;Z¼0

:

ð34Þ

The CGF can be expressed in terms of |Zi as

Gðw; ZÞ ¼ lim
t!1

1

t
lnhI jZðw; Z; tÞi; ð35Þ

with hI| = h11|, a left vector of unity. It is practically given by

the negative of the smallest eigenvalue of the matrix Ŵ,

Gðw; ZÞ ¼ � w1;1 þ w2;2

2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw1;1 � w2;2Þ2 þ 4w1;2ðw; ZÞw2;1ðw; ZÞ

q
2

:

ð36Þ

wi,j are the matrix elements of Ŵ, see eqn (30).

C. Fluctuation theorem

We confirm next the following symmetry

G(w,Z) = G(�w + i(bLmL � bRmR), �Z + iDb), (37)

with Db = bR � bL. In order to prove this, we focus on the

product D(w,Z) � w1,2(w,Z)w2,1(w,Z) in eqn (36),

D(w,Z) = [eiwF1
�(Z) + e�iwF2

+(Z)][eiwF1
+(Z) + e�iwF2

�(Z)].
(38)

Under the transformation w - �w + i(bLmL � bRmR) and

Z - �Z + iDb, using the relation fn(e) = [1 � fn(e)]e
�bn(e�mn),

we find that

eiwF1
�ðZÞ !e�iwe�bLmLþbRmR

Z 1
�1

dee�ieZe�Dbe

� ½1� fLðe� o0Þ�e�bLðe�o0�mLÞfRðeÞebRðe�mRÞ

� JLðe� o0ÞJRðeÞ

¼ e�iwebLo0F2
�ðZÞ:

e�iwF2
þðZÞ !eiwebLmL�bRmR

Z 1
�1

deeieZeDbe

� ½1� fRðeÞ�e�bRðe�mRÞfLðeþ o0ÞebLðeþo0�mLÞ

� JLðeþ o0ÞJRðeÞ

¼ eiwebLo0F1
þðZÞ:

ð39Þ

Similarly, one could show that

eiwF1
+(Z) - e�iwe�bLo0F2

+(Z)

e�iwF2
�(Z) - eiwe�bLo0F1

�(Z). (40)

The extra factors e�bLo0 cancel, and we recover the symmetry

D(w,Z) = D(�w + i(bLmL � bRmR), �Z + iDb),
(41)

confirming eqn (37). We can now demonstrate the validity of a

fluctuation relation for this non-equilibrium system. The

probability to transfer the energy o by the long time t, from

L to R, is given by the inverse Fourier transform of eqn (32),

PtðN;oÞ �
1

2p

X1
�1

e�iNw
Z 1
�1

Cðw; ZÞeGðw;ZÞte�ioZdZ; ð42Þ

with limt-N[lnC(w,Z)]/t=0. Similarly, the quantityPt(�N,�o)
represents the probability that N charged particles and an

energy o have been transmitted in the opposite direction, right

to left, up to time t. Based on the symmetry eqn (37), one can

show that27

lim
t!1

1

t
ln

PtðN;oÞ
Ptð�N;�oÞ

¼ oDbþNðbLmL � bRmRÞ
t

; ð43Þ

which is often written in a compact form as

PtðN;oÞ
Ptð�N;�oÞ

¼ eoDbþNðbLmL�bRmRÞ: ð44Þ

This expression goes beyond standard metal–molecule weak-

coupling schemes as the energy and charge transfer and not

tightly coupled, and the energy o can take continuous values,

unlike ref. 25, 26 and 46.

It should be noted that the above derivation has assumed

charge and energy conservation between the two reservoirs.

The full particle-energy counting statistics, without such an

assumption, would begin with the probability distribution

Pt(n,NL,NR,oL,oR), to find the system at time t in the spin

state n = 0, 1, with Nn electrons and on excess energy
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accumulated at the n bath. One can readily write an equation

of motion for this function, analogous to eqn (27), to be

Fourier transformed using four counting fields,

Ptðn; wL; wR; ZL; ZRÞ ¼
X
NL

eiNLwL
X
NR

eiNRwR

Z 1
�1

eioLZLdoL

�
Z 1
�1

eioRZRPtðn;NL;NR;oL;oRÞdoR:

ð45Þ

This quantity satisfies an equation of motion that is analogous

to eqn (29). It can be readily proved that the negative of the

smallest eigenvalue of the corresponding matrix ŴðwL; wR; ZL; ZRÞ
obeys the symmetry

G(wL,wR,ZL,ZR) = G(�wL + ibLmL, �wR + ibRmR, �ZL
+ ibL, �ZR + ibR), (46)

which can be translated into the FT for the probability itself,

PtðNL;NR;oL;oRÞ
Ptð�NL;�NR;�oL;�oRÞ

¼ eðNLbLmLþNRbRmRÞeðbRoRþbLoLÞ:

ð47Þ

Here, Pt(NL,NR,oL,oR) =
P

n=0,1Pt(n,NL,NR,oL,oR).

Enforcing energy and charge conservation, N = NL = �NR

and o = oR = �oL, we recover eqn (44).

D. Currents, and measures for vibrational cooling, heating, or

instability

Currents. Analytical expressions for the charge and energy

currents are obtained using the definition eqn (33), utilizing

eqn (30) and (36). These currents are defined positive when

flowing L to R, and their closed forms are

hIei = p1(k
L-R
1-0 � kR-L

1-0 ) + p0(k
L-R
0-1 � kR-L

0-1 ), (48)

and

hIqi ¼ p1

Z 1
�1

doo
�

fLðo� o0Þ½1� fRðoÞ�JLðo� o0ÞJRðoÞ

�
Z 1
�1

doo½1� fLðoþ o0ÞfRðoÞJLðoþ o0ÞJRðoÞ
�

þ p0

Z 1
�1

doofLðoþ o0Þ½1� fRðoÞ�JLðoþ o0ÞJRðoÞ
�

�
Z 1
�1

doo½1� fLðo� o0ÞfRðoÞJLðo� o0ÞJRðoÞ
�
:

ð49Þ

The TLS population is calculated in the steady-state limit,

p1 ¼
ke0!1

ke0!1 þ ke1!0

; p0 ¼ 1� p1: ð50Þ

The zero frequency noise is given by

hSei ¼ �
2

ke0!1 þ ke1!0

hIei2

þ 4

ke0!1 þ ke1!0

ðkL!R
0!1 kL!R

1!0 þ kR!L
0!1 k

R!L
1!0 Þ:

ð51Þ

The energy current, directed towards the vibrational mode, is

zero in the steady-state limit, unless the mode is further

coupled to a dissipative bath. Formally, it is given by the

expression

hIvibi = �o0p1[k
L-R
1-0 + kR-L

1-0 ] + p0o0[k
L-R
0-1 + kR-L

0-1 ].

(52)

Measures for vibrational instability. The stability of the

junction can be estimated, against heating effects, by inspecting

several measures. First, following ref. 18, we define the damping

rate Kvib of the vibrational mode as the difference between

relaxation and excitation rates,

Kvib � ke1-0 � ke0-1. (53)

Positive Kvib indicates the ‘‘normal’’ thermal-like behavior, as

relaxation processes overcome excitations. In this case, the

mode effective temperature (defined below) is found to be

either below (cooling) or above (heating) the environmental

temperature, yet the junction remains stable in the sense that

the ground vibrational state population is larger than the

excited level population. A negative value for Kvib evinces on

the process of an uncontrolled heating of the molecular mode,

eventually leading to junction instability and breakdown. One

can also directly inspect the TLS population: population

inversion reflects on vibrational instability.

Effective temperature. The TLS population can be further

utilized as a measure for the molecular vibration effective

temperature, 1/beff, defined using an equilibrium relation,

p1

p0
¼ e�beffo0 : ð54Þ

A negative value for beff attests on population inversion, thus

junction instability. When beff is positive, one should compare

it to the reservoirs’ inverse temperature b: if beff > b the

system demonstrates bias-induced cooling phenomena. For

beff o b the vibrational mode is heated up relative to its

environment. The latter typically occurs at an intermediate

bias voltage, before instabilities take place.

E. Numerical results: isolated mode

We demonstrate cooling, heating and mode instability upon

varying the bias voltage. A generic mechanism leading to

vibrational instabilities (and eventually junction rupture) in

D–A molecular rectifiers has been discussed in ref. 18: at large

positive bias, when the D state is positioned above the

acceptor level, electron–hole pair excitations by the molecular

vibration (TLS here) dominate the mode dynamics. This can

be schematically seen in Fig. 2, where the rate kL-R
0-1 overcomes

other rates once the donor spectral function is positioned above

the acceptor spectral function. As Kvib becomes negative,

population inversion is observed.

The junction setup is displayed in Fig. 3. D and A levels are

positioned such that in equilibrium, Dm = 0, the donor level is

placed below the Fermi energy m, while the acceptor level is of
a higher energy, ed(Dm = 0) o m o ea(Dm = 0). Under an

applied bias, the levels are assumed to linearly follow the

external potential drive (inset).55 Therefore, at a particular
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positive bias the levels cross. Beyond that, the levels exchange

arrangement, and the D state is of a higher energy. Throughout

the paper, the parameters o0, Gn, Gph, 1/b, k, ed,a and Dm are

given in units of eV.

The junction’s current–voltage characteristics is displayed in

Fig. 3(i), manifesting a substantial rectification effect. For negative

polarity, Dm = mL � mR o 0, the current is rather small. In

contrast, for positive bias the current substantially increases once

Dm > o0, reaching a maximum when the energy levels satisfy

ed � ea Bo0. Level broadening, Gn, affects the actual position of

the maximum. The current scales with k2, thus the value picked
here, k = 0.1, does not affect the current characteristics. The

damping rate, Kvib, is displayed in Fig. 3(ii). It shows the

following features: first, for large negative bias, Dm o �0.2, Kvib

is negative. This instability can be immediately removed, once a

very weak coupling to a phononic thermal reservoir is turned on,

see Fig. 7 and 12 below. Beyond that, the damping rate Kvib is

positive between �0.2 t Dm t 0.6, indicating on a stable mode

of operation. However, for large enough bias, Dm t 0.6, once

ed > ea, uncontrolled TLS heating takes place, recognized by a

sign change in Kvib. It should be noted that the instability takes

place in the parameter range very relevant to the rectifier

operation. It is thus important to understand how to tune the

system configuration so as to sustain junction functionality.

Fig. 4 depicts the corresponding population of the two

levels. At zero bias, ke0-1 = 0, thus the population of the

excited state is identically zero. At low positive bias one finds

that ke0-1 o ke1-0, leading to the ‘‘normal’’ situation of p0 > p1.

However, once the bias is large and the donor state is posi-

tioned above the acceptor site (Dm B 0.6), the excitation rate

ke0-1 exceeds the relaxation rate ke1-0 and population inver-

sion takes place. We note that for a negative bias, small

population inversion is also observed, as electrons damp

energy to the TLS when crossing the junction. However, since

hIei is rather small (Fig. 3), we do not expect molecular

instability in this regime, see also Fig. 12.

The details of the damping rate Kvib depend on the level

broadening and the reservoirs temperature as we show in

Fig. 5. The position of the turnover, between positive and

negative damping, appears at a similar value for the bias, and it

is generally independent of the reservoirs temperatures and Gn.
However, the width of the curve largely depends on these

parameters. We also display in Fig. 6 the charge current and

Fig. 3 (i) Charge current in a rectifying molecular junction. Inset:

energies of the donor (full line) and acceptor states (dashed line). The

dotted lines correspond to the chemical potential at the left and right

sides. (ii) Damping rate Kvib. The junction parameters are Gn = 0.2,

1/bn=0.005, k=0.1,o0 = 0.05 and ed(Dm=0)=�0.2, ea(Dm=0)=

0.4, all in units of [eV].

Fig. 4 Population of the two-state ‘‘vibration’’ as a function of bias

voltage. Parameters are the same as in Fig. 3.

Fig. 5 Damping rate in a rectifying junction for different broadening

parameters, Gn = 0.2, bn = 200 (full), Gn = 0.4, bn = 200 (dashed),

Gn = 0.2, bn = 5 (dashed-dotted). Other parameters are the same as

in Fig. 3.

Fig. 6 (i) Charge current and (ii) vibrational states population in a

rectifying junction with weak electron–phonon coupling and weak

molecule–metal hybridization strength, Gn= 0.01, k = 0.01, o0 = 0.2,

ed(Dm = 0) = �0.2, ea(Dm = 0) = 0.2, 1/bn = 0.005.
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the vibrational mode population for a different set of para-

meters: the coupling of the electronic levels to the respective

leads is taken smaller, Gn = 0.01 (units are in eV). This choice

represents a multisite molecular chain, where the relevant

electronic sites, those that couple to the particular vibrational

mode, are located within the chain center, few sites away from the

metals. We further assume a weaker electron–phonon coupling,

k = 0.01 and a larger vibrational frequency, o0 = 0.2, in the

range of typical stretching and bending molecular modes. The

junction energetics is also slightly changed, ed(Dm = 0) = �0.2,
ea(Dm= 0) = 0.2, to demonstrate that the behavior is generic for

a range of parameters. We then note that general features are left

intact, but the charge current is reduced bymore than three orders

of magnitude, bringing it to the nA scale. We also note that the

vibrational instability is still formed about similar values, at

Dm= 0.4, for positive bias. Our simulations therefore produce

charge current values in the range of hIei B mA–nA, in

agreement with experimental, e.g., ref. 1, 4 and 7, and other

theoretical values, for instance.11,12,14,15,19

It should be noted that the development of the instability, as

reported in Fig. 3, 4 and 5, does not depend on the concrete

value of k, the strength of the molecule–mode coupling, and

the behavior persists in the limit of vanishing vibronic cou-

pling, k- 0. In the next section we allow the vibrational mode

to thermalize with a phononic environment at a rate Gph. In

this case, the competition between k and Gph determines the

onset of instability, see eqn (58).

F. Numerical results: dissipative mode

Up to this point, we have assumed that the molecular vibrational

mode (TLS here) is well isolated from other vibrations. In reality,

internal modes typically exchange energy with ‘‘secondary’’

reservoirs modes, either internal, or part of a larger environment,

opening up an additional route for energy dissipation. It is

expected that in the presence of such a thermal bath, the region

of vibrational instability (Kvib o 0) would become limited.

A simple model that is capable of describing a hierarchy of

energy transfer processes, electronic energy - specific vibra-

tional excitation - thermal bath, is given by an extension of

model (13),

HAþB ¼
o0

2
sz þ sxðFe þ FbÞ

þ
X
l

ela
y
l al þ

X
r

erayrar þ
X
a

oab
y
aba:

ð55Þ

The notation ‘‘HA+B’’ indicates that the anharmonic mode is

coupled to a thermal bath (B). The operator Fe describes

electron–hole pair excitations as in eqn (14). The thermal bath

operator, coupled to the TLS transitions, includes displace-

ments of reservoir modes,

Fb ¼
X
a

vaðbya þ baÞ; ð56Þ

with byaðbaÞ as a bosonic creation (annihilation) operator for

the a phonon-reservoir mode.

Derivation of the full counting statistics can be reiterated, while

including energy dissipation from the TLS to the phonon bath.

For details, see Appendix A. We find that the expression for the

charge current stays intact, satisfying the formal expression (48).

However, the steady-state populations are corrected by a

phonon relaxation rate constant as

p1 ¼
ke0!1 þ Gphðo0Þnphðo0Þ

ke0!1 þ ke1!0 þ Gphðo0Þ½2nphðo0Þ þ 1� : ð57Þ

The electronic transition induced rates ken!n0 are those defined

in eqn (19); the phononic relaxation rate constant is Gph(o) =
2p
P

an
2
ad(oa � o). The function nph(o) = [ebpho � 1]�1 stands

for the Bose–Einstein distribution with bph as the temperature

of the phonon bath.

Fig. 7 presents the steady-state population for two choices

of Gph. When this parameter is small, population inversion still

takes place around donor–acceptor level crossing. However,

the phenomenon disappears at large enough bias. Thus, quite

interestingly, the domain of instability extends intermediate

bias values, while the system becomes stable again at very high

bias. This can be reasoned by inspecting Kvib. It is defined as

the difference between TLS relaxation and excitation rate

constants. In the presence of a thermal bath it is given by

Kvib = (ke1-0 + Gph(nph + 1)) � (ke0-1 + Gphnph)

= ke1-0 � ke0-1 + Gph. (58)

For convenience, the o0 dependence of the rates is left out.

While ke1-0 o ke0-1 may hold at large bias, both these rates

diminish with Dm, and the net damping rate can become

positive due to the Gph contribution. For large enough Gph,

instability does not take place at any voltage.

The effective TLS temperature, defined in eqn (54), is

displayed in Fig. 8 for several cases. First, in the absence of

a phonon thermal bath we find that at zero bias voltage the

molecular mode is thermalized at the metals’ temperature,

beff = b. This effective inverse temperature quickly drops with

an increase in bias, becoming negative around the value of

Dm = 0.6, where the D–A levels cross. This behavior indicates

the instability of the junction from that point. Next, we weakly

couple (Gph = 0.001) the single mode to an additional thermal

bath maintained at bph = 40. The following observations can be

made. (i) For negative bias, the mode is close to be equilibrated

with the phonon bath, as electron–hole excitations are sparse.

(ii) In accordance with Fig. 7, beff can reach a negative (unstable)

value around Dm = 0.6. However, beff becomes positive at

Fig. 7 TLS population as a function of bias voltage for Gph = 0.001

(narrow lines) and Gph = 0.1 (heavy lines). The excited (ground) state

population is presented by dashed (full) lines. Other parameters are the

same as in Fig. 3 with bph = 200.
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large enough bias, indicating that the system re-enters a

stability region. (iii) At low bias, �0.05 o Dm o 0.1, the

mode temperature is lower than its phononic environment, as

beff > bph. (iv) At strong mode-thermal bath coupling, Gph= 0.4,

the mode is closed to be thermalized with bph at all biases.

We now demonstrate mode cooling, to a temperature below

the phonon bath and metals temperature. Keeping both

electron and phonon reservoirs at a fixed temperature of

b = 40, the temperature difference DT � Teff � Tph is

presented in Fig. 9, for various frequencies and Gph values.

Generally, we note that at low positive bias, Dm o 0.1, one

may cool the mode by 40 K, the result of its coupling to a

nonequilibrium environment.

IV. Harmonic-mode rectifier

We study next the dynamics of model (11), assuming a

harmonic mode coupled to the electronic system. The

relevant equations of motion for the mode levels population

are45

:
pn = �[nked + (n + 1)keu]pn + (n + 1)kedpn+1 + nkeupn�1.

(59)

Here, the decay rate constant is independent of the level index

ked � ke1-0, and similarly, keu � ke0-1, defined in eqn (19). In

order to calculate the CGF, we define Pt(n,N,o) as the

probability that by the time t the harmonic mode occupies

level n, N electrons have been added to the R bath and an

additional energy o has been acquired by the R bath. This

quantity follows a differential equation analogous to eqn (27).

The characteristic function is an array whose nth element is

jZðw; Z; tÞin ¼
P

N eiNw
R1
�1Ptðn;N;oÞeioZdo. It satisfies a

differential equation corresponding to eqn (29)

djZðw; Z; tÞi
dt

¼ �Ŵðw; ZÞjZðw; Z; tÞi; ð60Þ

with the n � n matrix Ŵðw; ZÞ,

We can readily confirm the fluctuation theorem, by inspec-

ting the eigenvalues of det½lI � Ŵ�. For convenience, we

define the auxiliary matrix A � lI � Ŵ. Since it is tri-

diagonal, its determinant can be evaluated in a recursive

manner as

det[A]1,. . .,n = an,ndet[A]1,. . .,n�1 � an,n�1an�1,n det[A]1,. . .,n�2
(62)

where [A]1,. . .,k denotes the submatrix constructed by the first k

rows and columns of A. Thus, the symmetry of det[A] with

respect to w and Z is determined by the symmetry of the

products an,n�1an�1,n = wn,n�1wn�1,n, with wi,j the matrix

elements of Ŵ,

dn(w,Z) � wn,n�1(w,Z)wn�1,n(w,Z)

p [eiwF1
�(Z) + e�iwF2

+(Z)]

� [eiwF1
+(Z) + e�iwF2

�(Z)]. (63)

Using the relations (39)–(40), we conclude that

dn(w,Z) = dn(�w + i(bLmL � bRmR), �Z + iDb).
(64)

Given the recursive nature of det[A], this symmetry holds for all

the eigenvalues of Ŵ, confirming the fluctuation theorem (37). We

now obtain the steady-state population of the harmonic mode,

Fig. 8 Effective TLS temperature, Gph = 0 (dashed line); Gph =

0.001 and bph = 40 (full line) and Gph = 0.4 and bph = 40 (dashed-

dotted line). The inset zooms on the latter two cases. The dotted lines

mark the values bph = 40 and b = 0. Other junction parameters are

the same as in Fig. 3, with bn = 200.

Fig. 9 Cooling of the molecular vibration for o0 = 0.05 (dotted line),

o0 = 0.15 (dashed line),o0 = 0.3 (full line). (a) Gph= 0, (b) Gph= 0.001.

Other junction parameters are GL = GR = 0.1, and bph = bn = 40.

The levels are shifted with the bias voltage as depicted in Fig. 3.

Ŵðw;ZÞ¼

keu �eiwF1
�ðZÞ� e�iwF2

þðZÞ 0 0 . . . . . .

�eiwF1
þðZÞ� e�iwF2

�ðZÞ kedþ2keu �2eiwF1
�ðZÞ�2e�iwF2

þðZÞ 0 . . . . . .

0 �2eiwF1
þðZÞ�2e�iwF2

�ðZÞ 2kedþ3keu �3eiwF1
�ðZÞ�3e�iwF2

þðZÞ 0 . . .

0 0 . . . . . . . . . . . .

. . . . . .

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð61Þ

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

T
or

on
to

 o
n 

07
/0

5/
20

13
 2

0:
17

:4
6.

 
Pu

bl
is

he
d 

on
 2

4 
Ju

ly
 2

01
2 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
2C

P4
08

51
A

View Article Online

http://dx.doi.org/10.1039/c2cp40851a


13830 Phys. Chem. Chem. Phys., 2012, 14, 13820–13834 This journal is c the Owner Societies 2012

by solving eqn (59) in the long time limit,
:
pn = 0. This

results in45

pn ¼
keu
ked

� �n
1P1

n¼0 ðkeu=kedÞ
n ; n ¼ 0; 1; :::;1 ð65Þ

or

pn ¼
keu
ked

� �n

1� keu
ked

� �
; ð66Þ

if keu o ked. In the opposite limit, the system passes into the

unstable regime, and the levels’ population diverges. In that

sense, the harmonic model is unphysical as the number of

states is not bounded. One way to pull the system back into

physical realm is to couple the vibrational mode with a

thermal bath, see Appendix A. As explained above for the

TLS-mode case, the following damping rate is a measure for

the junction stability,

Kvib = ked � keu. (67)

A negative value indicates junction instability, as uncontrolled

heating of the mode takes place. Using steady-state popula-

tions, we proceed and derive the charge current expression,

valid only if keu o ked,

hIei ¼
1

t
h11 . . . j @

@iw
e�Ŵðw;ZÞtjw¼0;Z¼0jZðw; Z; t ¼ 0Þi

¼ � h11 . . . j @Ŵ
@iw
jw¼0;Z¼0jPssi

¼ � ðkR!L
d � kL!R

d Þkeu
ked � keu

þ ðk
R!L
u � kL!R

u Þked
ked � keu

� �

¼ � 2
kR!L
u kR!L

d � kL!R
u kL!R

d

ked � keu

ð68Þ

Here, Pss is a vector of steady-state population given by

eqn (66). Eqn (59)–(68) can be generalized to include the

interaction of the harmonic mode with a dissipative-thermal

phonon bath. Appendix A exemplifies this procedure for the

anharmonic-mode model. In practice, the electronic induced

rates ked and keu in eqn (66) are augmented by a phononic

contribution, Gph(o0)[nph(o0) + 1] and Gph(o0)nph(o0),

respectively.

Fig. 10 displays the charge current for zero and finite Gph

strength. In the absence of coupling to the phonon bath, the

current diverges around Dm = 0.6, where instability occurs.

For finite Gph, the current is larger when the vibrational mode

is harmonic, compared to the TLS-mode case (dotted), as the

electronic energy can be used to excite multiple transitions.

Fig. 11 further demonstrates the ‘‘stabilizing’’ effect the

interaction with a heat bath has on the harmonic mode. We

display the population for the states n = 0 to n = 3, top to

bottom. For Gph B 0 the data are presented up to Dm = 0.6,

where the population becomes unphysical (levels’ population

goes to zero there since infinite number of vibrational states

are occupied). This point is indicated by an arrow.

The cooling and heating behavior depicted in Fig. 9 for the TLS

model could be repeated for the present harmonic-mode case as

well, to yield the same behavior. The reason is that beff is

determined by the ratio of rates, and this ratio is identical in the

two models. Our conclusion here is thus that including mode-

anharmonicity is important for charge transport calculations: it

affects the current magnitude, and furthermore, the harmonic-

mode model may yield unphysical results (e.g. current divergence),

since there is no saturation situation for the vibrational mode.

Including molecular anharmonic aspects is essential for obtaining

reliable results when simulating junction behavior close to the

critical bias, where an instability occurs. On the other hand, the

generic instability formation is insensitive to themode harmonicity

or anharmonicity, as it only depends on the difference between

excitation and relaxation rates, identical in these two cases.

V. Summary

We have studied vibrational cooling, heating, and instability

formation in a phonon assisted D–A electron rectifier junction

using a full-counting statistics approach. Variants of the basic

model were constructed, assuming either harmonic or an

anharmonic vibrational mode, further allowing energy dissi-

pation to a phononic thermal environment.

Putting together our observations, we present in Fig. 12

and 13 stability maps for the system; the dark region codes

Fig. 10 Charge current in the harmonic-mode model for Gph = 0

(dashed line) and Gph = 0.05 (full line). For comparison, we also

present the current in the TLS-mode model with Gph = 0.05 (dotted

line). bn = bph = 40, other parameters are the same as in Fig. 3.

Fig. 11 Population of the first four levels of the harmonic mode. Full

lines: weak interaction with the heat bath, Gph = 10�4. The population

becomes unphysical (negative) for Dm> 0.6. Dashed lines: strong inter-

action with the heat bath, Gph= 0.1, lifts the instability. bn= bph = 40,

other parameters are the same as in Fig. 3.
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instability zones, with negative Kvib. These diagrams hold for

both TLS and harmonic mode cases. A reentrant behavior is

observed in Fig. 12: for a fixed value of Gph, say Gph = 0.005,

the junction is stable for Dm o 0.6, unstable around

0.6 o Dm o 1.2, while beyond that, the junction is operative

again. The reason for this behavior is that electronic-induced

excitation and relaxation rates, keu and ked, both become small

at large bias, thus the thermal bath-induced rates dominate the

mode dynamics, leading to a normal-thermal like behavior.

The coupling of the D and A molecular states to the metal

leads may be further tuned experimentally. In Fig. 13 we show

a stability map of the junction as a function of voltage bias and

metal–molecule hybridization GL = GR. We explore two

situations: (a) the molecular mode is perfectly isolated from

other vibrations, and (b) Gph is finite. In both cases, once

metal–molecule coupling is large enough, a stable operation

sustains. This result seems initially counterintuitive, as one

expects strongly coupled molecules to support high charge

and energy currents, potentially leading to junction rupture.

However, the key factor in the formation of vibrational

instability here is the fact that at certain voltages the vibra-

tional excitation rate keu exceeds the relaxation rate ked. In-

specting the rates (24), one can analytically prove that if the

effective density of states is energy independent, Jn(e) = C,

which is the case at strong metal–molecule coupling, then

ked � keu p C2o0, a positive number. The key factor in

instability build-up is thus the usage of electronic reservoirs

with effective DOS [eqn (24)] peaked around different energies,

the D and A levels.

Concluding our observations: (i) we confirmed the steady-

state entropy production FT for the different model variants.

This is a non-trivial task since charge and energy currents here

are not tightly coupled, a result of the strong metal–D and

A–metal couplings. Therefore, one needs to separately count

particle number and energy transfer in the system. (ii) We

derived simple analytical expressions for the charge current,

assuming either a harmonic or an anharmonic vibrational

mode. As expected, harmonic-mode junctions better conduct

since the electronic energy can be used to excite multiple

vibrational states. An anharmonic mode quickly reaches

saturation. (iii) We defined an effective temperature for the

vibration and demonstrated bias induced cooling at low bias,

Dm o 0.2. (iv) At intermediate voltage bias, 0.2 o Dm o 0.6,

heating effects were observed, and the mode effective tempera-

ture exceeds the environmental temperature. (v) Once the

donor and acceptor levels switch position for Dm > 0.6,

ed > ea, instability develops in both TLS and harmonic mode

models: the mode excitation rate exceeds the relaxation rate,

and the vibrational mode uncontrollably heats. (vi) Coupling

the vibrational mode to an external thermal bath stabilizes the

junction. In particular, assuming a weak interaction to a

phonon bath, Gph = 0.005, junction instability is removed

for Dm > 1.2; the electronic-induced rates diminish and the

mode dynamics is controlled by the thermal bath. (vii) The

appearance of vibrational instability can be traced down to the

metals’ energy dependent DOS, different at the two ends.

The simple models described here elucidate the role of

different factors in vibrational cooling, heating, and instability

build-up in a D–A electronic rectifier. The effects of mode

frequency, its interaction with other modes, the reservoirs’

temperature, metal–molecule coupling strength, and bias

voltage, were examined. While the focus of this work has been

on vibrational effects, the theory developed here could be used

for describing the coupling of an electronic junction to a cavity

mode-electromagnetic environment. One could thus reformu-

late this study and describe cooling, heating and diode-like

effects in photonic heat conduction.56–60 Future work will be

devoted to the study of noise processes in phonon-assisted

tunneling junctions, with the motivation to expose mode

properties (harmonicity) through the noise characteristics.

Appendix A: full counting statistics for charge and

energy in the dissipative anharmonic-mode rectifier

model

We describe here the derivation of the generating function and

the charge current for the anharmonic-mode bath-coupled

Fig. 12 Stability diagram. The dark island and the narrow strip

(at negative bias) are the parametric region in which the junction

becomes unstable. Other parameters are the same as in Fig. 3, besides

the temperatures, bL = bR = bph = 40.

Fig. 13 (a) Stability diagram for Gph = 0. (b) Stability diagram with

Gph = 0.005. The dark region is the parametric region in which the

junction becomes unstable, Kvib o 0. Other parameters are the same as

in Fig. 3, besides the temperatures bL = bR = bph = 40.
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rectifier model,

HAþB ¼
o0

2
sz þ sxðFe þ FbÞ

þ
X
l

ela
y
l al þ

X
r

erayrar þ
X
a

oab
y
aba:

ðA1Þ

Here, the TLS excitation and relaxation processes are coupled

to both electronic transitions in the junction and to a thermal-

phononic reservoir,

Fe ¼ k
X
l;r

ðl�l lra
y
l ar þ l�rlla

y
ralÞ:

Fb ¼
X
a

vaðbya þ baÞ:
ðA2Þ

al and ar are fermionic annihilation operators corresponding

to the left and right metals; the coefficients ln were defined in

eqn (8), k denotes the D–A tunneling strength, ba is a bosonic

operator, describing the a reservoir mode, va quantifies the

TLS–bath interaction strength. For more details, see text

around eqn (55).

The impurity (TLS) dynamics can be obtained by using a

master-equation approach.50 The procedure involves a second

order perturbation theory in the impurity coupling to both

electronic and phononic reservoirs. In the markovian limit,

under the rotating wave approximation, one standardly

achieves kinetic equations that separately account for the

electronic (e) and phononic (b) relaxation pathways,

:
p1 = �(ke1-0 + kb1-0)p1 + (ke0-1 + kb0-1)p0
p1 + p0 = 1. (A3)

The relaxation terms are given by

ken!n0 ¼
Z 1
�1

eiðen�en0 ÞthFeðtÞFeð0Þidt

kbn!n0 ¼
Z 1
�1

eiðen�en0 ÞthFbðtÞFbð0Þidt:
ðA4Þ

Here, en is the energy of the nth vibrational level. Electron

induced rate constants are detailed through eqn (19)–(25). The

thermal bath induced rates can be similarly put together,

kb1-0 = Gph(o0)[nph(o0) + 1], kb0-1 = kb1-0e
�o0bph

(A5)

nph(o) = [ebpho � 1]�1 denotes the Bose–Einstein distribution

function and Gph(o) = 2p
P

an2ad(oa � o). For brevity, we

ignore below the direct reference to frequency. We now define

the probability distribution function Pt(n,N,oL,oR,qo0), as

the probability to find the system at time t in state n = 0, 1,

with N electrons transferred to the right bath, on excess energy
accumulated at the n bath (n=L, R), and qo0 energy attained

by the phonon bath, due to the transfer of q quantas from the

TLS to this bath. Note that charge conservation between the L

and R baths is enforced, allowing us to work with a single

counting field for describing charge transfer processes in the

steady-state limit.

We now resolve the associated master equation for the two-

state population, to its charge and energy contributions. The

resulting equations are analogous to eqn (27),

_Ptð1;N;oL;oR; qo0Þ

¼ � _Ptð1;N;oL;oR; qo0Þ½ke1!0 þ Gphðo0Þ½nphðo0Þ þ 1��

þ
Z 1
�1

Ptð0;N � 1;oL þ e;oR � eþ o0; qo0ÞfLðeÞ

� ½1� fRðe� o0Þ�JLðeÞJRðe� o0Þde

þ
Z 1
�1

Ptð0;N þ 1;oL � eþ o0;oR þ e; qo0ÞfRðeÞ

� ½1� fLðe� o0Þ�JRðeÞJLðe� o0Þde

þPtð0;N;oL;oR; ðqþ 1Þo0ÞGphðo0Þnphðo0Þ

_Ptð0;N;oL;oR; qo0Þ

¼ �Ptð0;N;oL;oR; qo0Þ½ke0!1 þ Gphðo0Þnphðo0Þ�

þ
Z 1
�1

Ptð1;N � 1;oL þ e;oR � e� o0; qo0ÞfLðeÞ

� ½1� fRðeþ o0Þ�JLðeÞJRðeþ o0Þde

þ
Z 1
�1

Ptð1;N þ 1;oL � e� o0;oR þ e; qo0ÞfRðeÞ

� ½1� fLðeþ o0Þ�JRðeÞJLðeþ o0Þde

þPtð1;N;oL;oR; ðq� 1Þo0ÞGphðo0Þ½nphðo0Þ þ 1�:
ðA6Þ

We Fourier transform this system with respect to charge and

energy,

Ptðn; w; ZL; ZR; xÞ ¼
X1

N¼�1
eiNw

X1
q¼�1

eiqo0x
Z 1
�1

eioLZLdoL

�
Z 1
�1

eioRZRdoRPtðn;N;oL;oR; qo0Þ

ðA7Þ

to obtain the characteristic functionZ(w,ZL,ZR,x,t). It depends
on the energy counting fields Zn and x, and the charge counting

field w. It is a vector with two entries, as in eqn (28), and it

satisfies the differential equation

djZi
dt
¼ �ŴjZi: ðA8Þ

The matrix Ŵ has the following entries

Ŵ ¼
ke0!1 þ Gphnph �eiwF1

�ðZL; ZRÞ � e�iwF2
þðZL; ZRÞ � Gphðnph þ 1Þeixo0

�eiwF1
þðZL; ZRÞ � e�iwF2

�ðZL; ZRÞ � Gphnphe
�ixo0 ke1!0 þ Gphðnph þ 1Þ

 !
ðA9Þ
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where

F1
�ðZL; ZRÞ ¼

Z 1
�1

e�ieZLeiðe	o0ÞZR

� fLðeÞ½1� fRðe	 o0Þ�JLðeÞJRðe	 o0Þde
ðA10Þ

and

F2
�ðZL; ZRÞ ¼

Z 1
�1

eiZLðe�o0Þe�ieZR

� ½1� fLðe� o0Þ�fRðeÞJLðe� o0ÞJRðeÞde:
ðA11Þ

The CGF is expressed in terms of the characteristic function

|Zi as

Gðw; ZL; ZR; xÞ ¼ lim
t!1

1

t
lnhI jZi; ðA12Þ

Practically, it is reached by the negative of the smallest

eigenvalue of the matrix Ŵ,

Gðw; ZL; ZR; xÞ ¼ �
w1;1 þ w2;2

2

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw1;1 � w2;2Þ2 þ 4w1;2w2;1

q
2

; ðA13Þ

with wi,j the matrix elements in eqn (A9). The charge current is

obtained by taking the first derivative with respect to (iw),

hIei ¼
@G

@iw

����
w;Zn ;x¼0

¼ ðw1;1 þ w2;2Þ�1 w2;1
@w1;2

@iw
þ w1;2

@w2;1

@iw

� �����
w;Zn;x¼0

;

ðA14Þ

where the following holds when the counting fields are all set

to zero, w1,2 = �w2,2, w2,1 = �w1,1, qw1,2/q(iw)|0 = kR-L
1-0 �

kL-R
1-0 and qw2,1/q(iw)|0 = kR-L

0-1 � kL-R
0-1 . Recall that the rates

kn!n
0

n!n0 are electron–hole generation assisted rates, see eqn (25).

We can now identify the levels population,

w1;1

w1;1 þ w2;2
¼ ke0!1 þ Gphnph

ke0!1 þ ke1!0 þ Gph½2nph þ 1� ¼ p1 ðA15Þ

and similarly for p0 = 1 � p1, resulting in the expression for

the charge current

hIei = p1(k
L-R
1-0 � kR-L

1-0 ) + p0(k
L-R
0-1 � kR-L

0-1 ).

(A16)

This result is formally identical to eqn (48), with the only

difference that the steady-state TLS population is now

modified, to include phonon-bath assisted transitions.
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18 J.-T. Lü, P. Hedegard and M. Brandbyge, Phys. Rev. Lett., 2011,

107, 046801.
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